SQL Injection

Many web developers are unaware of how SQL queries can be tampered with, and assume that an SQL query is a trusted command. It means that SQL queries are able to circumvent access controls, thereby bypassing standard authentication and authorization checks, and sometimes SQL queries even may allow access to host operating system level commands.

Direct SQL Command Injection is a technique where an attacker creates or alters existing SQL commands to expose hidden data, or to override valuable ones, or even to execute dangerous system level commands on the database host. This is accomplished by the application taking user input and combining it with static parameters to build a SQL query. The following examples are based on true stories, unfortunately.

Owing to the lack of input validation and connecting to the database on behalf of a superuser or the one who can create users, the attacker may create a superuser in your database.

Example 27-2. Splitting the result set into pages ... and making superusers (PostgreSQL)

<?php

$offset
= $argv[0]; // beware, no input validation!
$query  = "SELECT id, name FROM products ORDER BY name LIMIT 20 OFFSET $offset;";
$result = pg_query($conn, $query);

?>
Normal users click on the 'next', 'prev' links where the $offset is encoded into the URL. The script expects that the incoming $offset is a decimal number. However, what if someone tries to break in by appending a urlencode()'d form of the following to the URL

0;
insert into pg_shadow(usename,usesysid,usesuper,usecatupd,passwd)
    select 'crack', usesysid, 't','t','crack'
    from pg_shadow where usename='postgres';
--

If it happened, then the script would present a superuser access to him. Note that 0; is to supply a valid offset to the original query and to terminate it.

Note: It is common technique to force the SQL parser to ignore the rest of the query written by the developer with -- which is the comment sign in SQL.

A feasible way to gain passwords is to circumvent your search result pages. The only thing the attacker needs to do is to see if there are any submitted variables used in SQL statements which are not handled properly. These filters can be set commonly in a preceding form to customize WHERE, ORDER BY, LIMIT and OFFSET clauses in SELECT statements. If your database supports the UNION construct, the attacker may try to append an entire query to the original one to list passwords from an arbitrary table. Using encrypted password fields is strongly encouraged.

Example 27-3. Listing out articles ... and some passwords (any database server)

<?php

$query  
= "SELECT id, name, inserted, size FROM products
                  WHERE size = '$size'
                  ORDER BY $order LIMIT $limit, $offset;"
;
$result = odbc_exec($conn, $query);

?>
The static part of the query can be combined with another SELECT statement which reveals all passwords:

'
union select '1', concat(uname||'-'||passwd) as name, '1971-01-01', '0' from usertable;
--

If this query (playing with the ' and --) were assigned to one of the variables used in $query, the query beast awakened.

SQL UPDATE's are also susceptible to attack. These queries are also threatened by chopping and appending an entirely new query to it. But the attacker might fiddle with the SET clause. In this case some schema information must be possessed to manipulate the query successfully. This can be acquired by examining the form variable names, or just simply brute forcing. There are not so many naming conventions for fields storing passwords or usernames.

Example 27-4. From resetting a password ... to gaining more privileges (any database server)

<?php
$query
= "UPDATE usertable SET pwd='$pwd' WHERE uid='$uid';";
?>
But a malicious user sumbits the value ' or uid like'%admin%'; -- to $uid to change the admin's password, or simply sets $pwd to "hehehe', admin='yes', trusted=100 " (with a trailing space) to gain more privileges. Then, the query will be twisted:

<?php

// $uid == ' or uid like'%admin%'; --
$query = "UPDATE usertable SET pwd='...' WHERE uid='' or uid like '%admin%'; --";

// $pwd == "hehehe', admin='yes', trusted=100 "
$query = "UPDATE usertable SET pwd='hehehe', admin='yes', trusted=100 WHERE
...;"
;

?>

A frightening example how operating system level commands can be accessed on some database hosts.

Example 27-5. Attacking the database hosts operating system (MSSQL Server)

<?php

$query  
= "SELECT * FROM products WHERE id LIKE '%$prod%'";
$result = mssql_query($query);

?>
If attacker submits the value a%' exec master..xp_cmdshell 'net user test testpass /ADD' -- to $prod, then the $query will be:

<?php

$query  
= "SELECT * FROM products
                    WHERE id LIKE '%a%'
                    exec master..xp_cmdshell 'net user test testpass /ADD'--"
;
$result = mssql_query($query);

?>

MSSQL Server executes the SQL statements in the batch including a command to add a new user to the local accounts database. If this application were running as sa and the MSSQLSERVER service is running with sufficient privileges, the attacker would now have an account with which to access this machine.

Note: Some of the examples above is tied to a specific database server. This does not mean that a similar attack is impossible against other products. Your database server may be similarly vulnerable in another manner.

Avoiding techniques

You may plead that the attacker must possess a piece of information about the database schema in most examples. You are right, but you never know when and how it can be taken out, and if it happens, your database may be exposed. If you are using an open source, or publicly available database handling package, which may belong to a content management system or forum, the intruders easily produce a copy of a piece of your code. It may be also a security risk if it is a poorly designed one.

These attacks are mainly based on exploiting the code not being written with security in mind. Never trust any kind of input, especially that which comes from the client side, even though it comes from a select box, a hidden input field or a cookie. The first example shows that such a blameless query can cause disasters.

Besides these, you benefit from logging queries either within your script or by the database itself, if it supports logging. Obviously, the logging is unable to prevent any harmful attempt, but it can be helpful to trace back which application has been circumvented. The log is not useful by itself, but through the information it contains. More detail is generally better than less.